A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms
نویسنده
چکیده
We prove in a constructive way that multivariate integration in appropriate weighted Sobolev classes is strongly tractable and the e-exponent of strong tractability is 1 (which is the best-possible value) under a stronger assumption than Sloan and Wo! zniakowski’s assumption. We show that quasi-Monte Carlo algorithms based on the Sobol sequence and Halton sequence achieve the convergence order Oðn 1þdÞ for any d > 0 independent of the dimension with a worst-case deterministic guarantee (where n is the number of function evaluations). This implies that quasi-Monte Carlo algorithms based on the Sobol and Halton sequences converge faster and therefore are superior to Monte Carlo methods independent of the dimension for integrands in suitable weighted Sobolev classes. #
منابع مشابه
Strong tractability of multivariate integration using quasi-Monte Carlo algorithms
We study quasi–Monte Carlo algorithms based on low discrepancy sequences for multivariate integration. We consider the problem of how the minimal number of function evaluations needed to reduce the worst-case error from its initial error by a factor of ε depends on ε−1 and the dimension s. Strong tractability means that it does not depend on s and is bounded by a polynomial in ε−1. The least po...
متن کاملQuasi-Monte Carlo methods can be efficient for integration over products of spheres
We study the worst-case error of quasi-Monte Carlo rules for multivariate integration in some weighted Sobolev spaces of functions defined on the product of d copies of the unit sphere Ss ⊆ Rs+1. The space is a tensor product of d reproducing kernel Hilbert spaces defined in terms of uniformly bounded ‘weight’ parameters γd,a for a = 1, 2, . . . , d. We prove that strong QMC tractability holds ...
متن کاملTractability of the Quasi-Monte Carlo Quadrature with Halton Points for Elliptic Pdes with Random Diffusion
This article is dedicated to the computation of the moments of the solution to stochastic partial differential equations with log-normal distributed diffusion coefficient by the Quasi-Monte Carlo method. Our main result is the polynomial tractability for the QuasiMonte Carlo method based on the Halton sequence. As a by-product, we obtain also the strong tractability of stochastic partial differ...
متن کاملOn the tractability of the Brownian Bridge algorithm
Recent results in the theory of quasi-Monte Carlo methods have shown that the weighted Koksma-Hlawka inequality gives better estimates for the error of quasi-Monte Carlo algorithms. We present a method for finding good weights for several classes of functions and apply it to certain algorithms using the Brownian Bridge construction, which are important for financial applications.
متن کاملEvaluating Quasi-Monte Carlo (QMC) algorithms in blocks decomposition of de-trended
The length of equal minimal and maximal blocks has eected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using Quasi Monte Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in Horest power.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Complexity
دوره 18 شماره
صفحات -
تاریخ انتشار 2002